Abstract:Evaluating the strategic reasoning capabilities of Large Language Models (LLMs) requires moving beyond static benchmarks to dynamic, multi-turn interactions. We introduce AIDG (Adversarial Information Deduction Game), a game-theoretic framework that probes the asymmetry between information extraction (active deduction) and information containment (state maintenance) in dialogue. We propose two complementary tasks: AIDG-I, measuring pragmatic strategy in social deduction, and AIDG-II, measuring constraint satisfaction in a structured "20 Questions" setting. Across 439 games with six frontier LLMs, we observe a clear capability asymmetry: models perform substantially better at containment than deduction, with a 350 ELO advantage on defense;(Cohen's d = 5.47). We identify two bottlenecks driving this gap: (1) Information Dynamics, where confirmation strategies are 7.75x more effective than blind deduction (p < 0.00001), and (2) Constraint Adherence, where instruction-following degrades under conversational load, accounting for 41.3% of deductive failures. These findings suggest that while LLMs excel at local defensive coherence, they struggle with the global state tracking required for strategic inquiry.
Abstract:Evaluating the social intelligence of Large Language Models (LLMs) increasingly requires moving beyond static text generation toward dynamic, adversarial interaction. We introduce the Adversarial Resource Extraction Game (AREG), a benchmark that operationalizes persuasion and resistance as a multi-turn, zero-sum negotiation over financial resources. Using a round-robin tournament across frontier models, AREG enables joint evaluation of offensive (persuasion) and defensive (resistance) capabilities within a single interactional framework. Our analysis provides evidence that these capabilities are weakly correlated ($ρ= 0.33$) and empirically dissociated: strong persuasive performance does not reliably predict strong resistance, and vice versa. Across all evaluated models, resistance scores exceed persuasion scores, indicating a systematic defensive advantage in adversarial dialogue settings. Further linguistic analysis suggests that interaction structure plays a central role in these outcomes. Incremental commitment-seeking strategies are associated with higher extraction success, while verification-seeking responses are more prevalent in successful defenses than explicit refusal. Together, these findings indicate that social influence in LLMs is not a monolithic capability and that evaluation frameworks focusing on persuasion alone may overlook asymmetric behavioral vulnerabilities.