Abstract:The theranostic paradigm enables personalization of treatment by selecting patients with a diagnostic radiopharmaceutical and monitoring therapy using a matched therapeutic isotope. This strategy relies on accurate image reconstruction of both pre-therapy and post-therapy images for patient selection and monitoring treatment. However, traditional reconstruction methods are hindered by challenges such as crosstalk in multi-isotope imaging and extremely low-count measurements when imaging of alpha- ({\alpha}-) emitting therapies. Additionally, to fully realize the benefits of new imaging systems being developed for theranostic applications, advanced reconstruction techniques are needed. These needs, alongside the growing clinical adoption of theranostics, have spurred the development of novel PET and SPECT reconstruction algorithms. This review highlights recent progress and addresses critical challenges and unmet needs in theranostic image reconstruction.
Abstract:Ocular Toxoplasmosis (OT), is a common eye infection caused by T. gondii that can cause vision problems. Diagnosis is typically done through a clinical examination and imaging, but these methods can be complicated and costly, requiring trained personnel. To address this issue, we have created a benchmark study that evaluates the effectiveness of existing pre-trained networks using transfer learning techniques to detect OT from fundus images. Furthermore, we have also analysed the performance of transfer-learning based segmentation networks to segment lesions in the images. This research seeks to provide a guide for future researchers looking to utilise DL techniques and develop a cheap, automated, easy-to-use, and accurate diagnostic method. We have performed in-depth analysis of different feature extraction techniques in order to find the most optimal one for OT classification and segmentation of lesions. For classification tasks, we have evaluated pre-trained models such as VGG16, MobileNetV2, InceptionV3, ResNet50, and DenseNet121 models. Among them, MobileNetV2 outperformed all other models in terms of Accuracy (Acc), Recall, and F1 Score outperforming the second-best model, InceptionV3 by 0.7% higher Acc. However, DenseNet121 achieved the best result in terms of Precision, which was 0.1% higher than MobileNetv2. For the segmentation task, this work has exploited U-Net architecture. In order to utilize transfer learning the encoder block of the traditional U-Net was replaced by MobileNetV2, InceptionV3, ResNet34, and VGG16 to evaluate different architectures moreover two different two different loss functions (Dice loss and Jaccard loss) were exploited in order to find the most optimal one. The MobileNetV2/U-Net outperformed ResNet34 by 0.5% and 2.1% in terms of Acc and Dice Score, respectively when Jaccard loss function is employed during the training.