Abstract:Ensuring fairness in machine learning models is critical, especially when biases compound across intersecting protected attributes like race, gender, and age. While existing methods address fairness for single attributes, they fail to capture the nuanced, multiplicative biases faced by intersectional subgroups. We introduce Adaptive Pareto Front Explorer (APFEx), the first framework to explicitly model intersectional fairness as a joint optimization problem over the Cartesian product of sensitive attributes. APFEx combines three key innovations- (1) an adaptive multi-objective optimizer that dynamically switches between Pareto cone projection, gradient weighting, and exploration strategies to navigate fairness-accuracy trade-offs, (2) differentiable intersectional fairness metrics enabling gradient-based optimization of non-smooth subgroup disparities, and (3) theoretical guarantees of convergence to Pareto-optimal solutions. Experiments on four real-world datasets demonstrate APFEx's superiority, reducing fairness violations while maintaining competitive accuracy. Our work bridges a critical gap in fair ML, providing a scalable, model-agnostic solution for intersectional fairness.
Abstract:Generating rational and generally accurate responses to tasks, often accompanied by example demonstrations, highlights Large Language Model's (LLM's) remarkable In-Context Learning (ICL) capabilities without requiring updates to the model's parameter space. Despite having an ongoing exploration focused on the inference from a document-level concept, its behavior in learning well-defined functions or relations in context needs a careful investigation. In this article, we present the performance of ICL on partially ordered relation by introducing the notion of inductively increasing complexity in prompts. In most cases, the saturated performance of the chosen metric indicates that while ICL offers some benefits, its effectiveness remains constrained as we increase the complexity in the prompts even in presence of sufficient demonstrative examples. The behavior is evident from our empirical findings and has further been theoretically justified in term of its implicit optimization process. The code is available \href{https://anonymous.4open.science/r/ICLonPartiallyOrderSet}{here}.