Abstract:This paper introduces a novel changepoint detection framework that combines ensemble statistical methods with Large Language Models (LLMs) to enhance both detection accuracy and the interpretability of regime changes in time series data. Two critical limitations in the field are addressed. First, individual detection methods exhibit complementary strengths and weaknesses depending on data characteristics, making method selection non-trivial and prone to suboptimal results. Second, automated, contextual explanations for detected changes are largely absent. The proposed ensemble method aggregates results from ten distinct changepoint detection algorithms, achieving superior performance and robustness compared to individual methods. Additionally, an LLM-powered explanation pipeline automatically generates contextual narratives, linking detected changepoints to potential real-world historical events. For private or domain-specific data, a Retrieval-Augmented Generation (RAG) solution enables explanations grounded in user-provided documents. The open source Python framework demonstrates practical utility in diverse domains, including finance, political science, and environmental science, transforming raw statistical output into actionable insights for analysts and decision-makers.
Abstract:Explainable AI (XAI) methods like SHAP and LIME produce numerical feature attributions that remain inaccessible to non expert users. Prior work has shown that Large Language Models (LLMs) can transform these outputs into natural language explanations (NLEs), but it remains unclear which factors contribute to high-quality explanations. We present a systematic factorial study investigating how Forecasting model choice, XAI method, LLM selection, and prompting strategy affect NLE quality. Our design spans four models (XGBoost (XGB), Random Forest (RF), Multilayer Perceptron (MLP), and SARIMAX - comparing black-box Machine-Learning (ML) against classical time-series approaches), three XAI conditions (SHAP, LIME, and a no-XAI baseline), three LLMs (GPT-4o, Llama-3-8B, DeepSeek-R1), and eight prompting strategies. Using G-Eval, an LLM-as-a-judge evaluation method, with dual LLM judges and four evaluation criteria, we evaluate 660 explanations for time-series forecasting. Our results suggest that: (1) XAI provides only small improvements over no-XAI baselines, and only for expert audiences; (2) LLM choice dominates all other factors, with DeepSeek-R1 outperforming GPT-4o and Llama-3; (3) we observe an interpretability paradox: in our setting, SARIMAX yielded lower NLE quality than ML models despite higher prediction accuracy; (4) zero-shot prompting is competitive with self-consistency at 7-times lower cost; and (5) chain-of-thought hurts rather than helps.