Abstract:Since state-of-the-art uncertainty estimation methods are often computationally demanding, we investigate whether incorporating prior information can improve uncertainty estimates in conventional deep neural networks. Our focus is on machine learning tasks where meaningful predictions can be made from sub-parts of the input. For example, in speaker classification, the speech waveform can be divided into sequential patches, each containing information about the same speaker. We observe that the variance between sub-predictions serves as a reliable proxy for uncertainty in such settings. Our proposed variance-based scaling framework produces competitive uncertainty estimates in classification while being less computationally demanding and allowing for integration as a post-hoc calibration tool. This approach also leads to a simple extension of deep ensembles, improving the expressiveness of their predicted distributions.
Abstract:We introduce Smooth InfoMax (SIM), a novel method for self-supervised representation learning that incorporates an interpretability constraint into the learned representations at various depths of the neural network. SIM's architecture is split up into probabilistic modules, each locally optimized using the InfoNCE bound. Inspired by VAEs, the representations from these modules are designed to be samples from Gaussian distributions and are further constrained to be close to the standard normal distribution. This results in a smooth and predictable space, enabling traversal of the latent space through a decoder for easier post-hoc analysis of the learned representations. We evaluate SIM's performance on sequential speech data, showing that it performs competitively with its less interpretable counterpart, Greedy InfoMax (GIM). Moreover, we provide insights into SIM's internal representations, demonstrating that the contained information is less entangled throughout the representation and more concentrated in a smaller subset of the dimensions. This further highlights the improved interpretability of SIM.