Alert button
Picture for F. Vigneau

F. Vigneau

Alert button

Bridging the reality gap in quantum devices with physics-aware machine learning

Add code
Bookmark button
Alert button
Nov 22, 2021
D. L. Craig, H. Moon, F. Fedele, D. T. Lennon, B. Van Straaten, F. Vigneau, L. C. Camenzind, D. M. Zumbühl, G. A. D. Briggs, M. A. Osborne, D. Sejdinovic, N. Ares

Figure 1 for Bridging the reality gap in quantum devices with physics-aware machine learning
Figure 2 for Bridging the reality gap in quantum devices with physics-aware machine learning
Figure 3 for Bridging the reality gap in quantum devices with physics-aware machine learning
Figure 4 for Bridging the reality gap in quantum devices with physics-aware machine learning
Viaarxiv icon

Cross-architecture Tuning of Silicon and SiGe-based Quantum Devices Using Machine Learning

Add code
Bookmark button
Alert button
Jul 27, 2021
B. Severin, D. T. Lennon, L. C. Camenzind, F. Vigneau, F. Fedele, D. Jirovec, A. Ballabio, D. Chrastina, G. Isella, M. de Kruijf, M. J. Carballido, S. Svab, A. V. Kuhlmann, F. R. Braakman, S. Geyer, F. N. M. Froning, H. Moon, M. A. Osborne, D. Sejdinovic, G. Katsaros, D. M. Zumbühl, G. A. D. Briggs, N. Ares

Figure 1 for Cross-architecture Tuning of Silicon and SiGe-based Quantum Devices Using Machine Learning
Figure 2 for Cross-architecture Tuning of Silicon and SiGe-based Quantum Devices Using Machine Learning
Figure 3 for Cross-architecture Tuning of Silicon and SiGe-based Quantum Devices Using Machine Learning
Figure 4 for Cross-architecture Tuning of Silicon and SiGe-based Quantum Devices Using Machine Learning
Viaarxiv icon

Deep Reinforcement Learning for Efficient Measurement of Quantum Devices

Add code
Bookmark button
Alert button
Sep 30, 2020
V. Nguyen, S. B. Orbell, D. T. Lennon, H. Moon, F. Vigneau, L. C. Camenzind, L. Yu, D. M. Zumbühl, G. A. D. Briggs, M. A. Osborne, D. Sejdinovic, N. Ares

Figure 1 for Deep Reinforcement Learning for Efficient Measurement of Quantum Devices
Figure 2 for Deep Reinforcement Learning for Efficient Measurement of Quantum Devices
Figure 3 for Deep Reinforcement Learning for Efficient Measurement of Quantum Devices
Figure 4 for Deep Reinforcement Learning for Efficient Measurement of Quantum Devices
Viaarxiv icon

Quantum device fine-tuning using unsupervised embedding learning

Add code
Bookmark button
Alert button
Jan 13, 2020
N. M. van Esbroeck, D. T. Lennon, H. Moon, V. Nguyen, F. Vigneau, L. C. Camenzind, L. Yu, D. M. Zumbühl, G. A. D. Briggs, D. Sejdinovic, N. Ares

Figure 1 for Quantum device fine-tuning using unsupervised embedding learning
Figure 2 for Quantum device fine-tuning using unsupervised embedding learning
Figure 3 for Quantum device fine-tuning using unsupervised embedding learning
Figure 4 for Quantum device fine-tuning using unsupervised embedding learning
Viaarxiv icon

Machine learning enables completely automatic tuning of a quantum device faster than human experts

Add code
Bookmark button
Alert button
Jan 08, 2020
H. Moon, D. T. Lennon, J. Kirkpatrick, N. M. van Esbroeck, L. C. Camenzind, Liuqi Yu, F. Vigneau, D. M. Zumbühl, G. A. D. Briggs, M. A Osborne, D. Sejdinovic, E. A. Laird, N. Ares

Figure 1 for Machine learning enables completely automatic tuning of a quantum device faster than human experts
Figure 2 for Machine learning enables completely automatic tuning of a quantum device faster than human experts
Figure 3 for Machine learning enables completely automatic tuning of a quantum device faster than human experts
Figure 4 for Machine learning enables completely automatic tuning of a quantum device faster than human experts
Viaarxiv icon