Abstract:This paper introduces a novel watermarking method for diffusion models. It is based on guiding the diffusion process using the gradient computed from any off-the-shelf watermark decoder. The gradient computation encompasses different image augmentations, increasing robustness to attacks against which the decoder was not originally robust, without retraining or fine-tuning. Our method effectively convert any \textit{post-hoc} watermarking scheme into an in-generation embedding along the diffusion process. We show that this approach is complementary to watermarking techniques modifying the variational autoencoder at the end of the diffusion process. We validate the methods on different diffusion models and detectors. The watermarking guidance does not significantly alter the generated image for a given seed and prompt, preserving both the diversity and quality of generation.
Abstract:Watermarking is a technical means to dissuade malfeasant usage of Large Language Models. This paper proposes a novel watermarking scheme, so-called WaterMax, that enjoys high detectability while sustaining the quality of the generated text of the original LLM. Its new design leaves the LLM untouched (no modification of the weights, logits, temperature, or sampling technique). WaterMax balances robustness and complexity contrary to the watermarking techniques of the literature inherently provoking a trade-off between quality and robustness. Its performance is both theoretically proven and experimentally validated. It outperforms all the SotA techniques under the most complete benchmark suite.