Abstract:The emerging trend in computer vision emphasizes developing universal models capable of simultaneously addressing multiple diverse tasks. Such universality typically requires joint training across multi-domain datasets to ensure effective generalization. However, monocular 3D object detection presents unique challenges in multi-domain training due to the scarcity of datasets annotated with accurate 3D ground-truth labels, especially beyond typical road-based autonomous driving contexts. To address this challenge, we introduce a novel weakly supervised framework leveraging pseudo-labels. Current pretrained models often struggle to accurately detect pedestrians in non-road environments due to inherent dataset biases. Unlike generalized image-based 2D object detection models, achieving similar generalization in monocular 3D detection remains largely unexplored. In this paper, we propose GATE3D, a novel framework designed specifically for generalized monocular 3D object detection via weak supervision. GATE3D effectively bridges domain gaps by employing consistency losses between 2D and 3D predictions. Remarkably, our model achieves competitive performance on the KITTI benchmark as well as on an indoor-office dataset collected by us to evaluate the generalization capabilities of our framework. Our results demonstrate that GATE3D significantly accelerates learning from limited annotated data through effective pre-training strategies, highlighting substantial potential for broader impacts in robotics, augmented reality, and virtual reality applications. Project page: https://ies0411.github.io/GATE3D/
Abstract:Person detection and tracking (PDT) has seen significant advancements with 2D camera-based systems in the autonomous vehicle field, leading to widespread adoption of these algorithms. However, growing privacy concerns have recently emerged as a major issue, prompting a shift towards LiDAR-based PDT as a viable alternative. Within this domain, "Tracking-by-Detection" (TBD) has become a prominent methodology. Despite its effectiveness, LiDAR-based PDT has not yet achieved the same level of performance as camera-based PDT. This paper examines key components of the LiDAR-based PDT framework, including detection post-processing, data association, motion modeling, and lifecycle management. Building upon these insights, we introduce SpbTrack, a robust person tracker designed for diverse environments. Our method achieves superior performance on noisy datasets and state-of-the-art results on KITTI Dataset benchmarks and custom office indoor dataset among LiDAR-based trackers.