Abstract:Language-driven dexterous grasp generation requires the models to understand task semantics, 3D geometry, and complex hand-object interactions. While vision-language models have been applied to this problem, existing approaches directly map observations to grasp parameters without intermediate reasoning about physical interactions. We present DextER, Dexterous Grasp Generation with Embodied Reasoning, which introduces contact-based embodied reasoning for multi-finger manipulation. Our key insight is that predicting which hand links contact where on the object surface provides an embodiment-aware intermediate representation bridging task semantics with physical constraints. DextER autoregressively generates embodied contact tokens specifying which finger links contact where on the object surface, followed by grasp tokens encoding the hand configuration. On DexGYS, DextER achieves 67.14% success rate, outperforming state-of-the-art by 3.83%p with 96.4% improvement in intention alignment. We also demonstrate steerable generation through partial contact specification, providing fine-grained control over grasp synthesis.
Abstract:Affordance grounding-localizing object regions based on natural language descriptions of interactions-is a critical challenge for enabling intelligent agents to understand and interact with their environments. However, this task remains challenging due to the need for fine-grained part-level localization, the ambiguity arising from multiple valid interaction regions, and the scarcity of large-scale datasets. In this work, we introduce Affogato, a large-scale benchmark comprising 150K instances, annotated with open-vocabulary text descriptions and corresponding 3D affordance heatmaps across a diverse set of objects and interactions. Building on this benchmark, we develop simple yet effective vision-language models that leverage pretrained part-aware vision backbones and a text-conditional heatmap decoder. Our models trained with the Affogato dataset achieve promising performance on the existing 2D and 3D benchmarks, and notably, exhibit effectiveness in open-vocabulary cross-domain generalization. The Affogato dataset is shared in public: https://huggingface.co/datasets/project-affogato/affogato