Abstract:In this study we analyzed average sleep durations across 61 countries to examine the impact of Daylight Saving Time (DST) practices. Key metrics influencing sleep were identified, and statistical correlation analysis was applied to explore relationships among these factors. Countries were grouped based on DST observance, and visualizations compared sleep patterns between DST and non-DST regions. Results show that, on average, countries observing DST tend to report longer sleep durations than those that do not. A more detailed pattern emerged when accounting for latitude: at lower latitudes, DST-observing countries reported shorter sleep durations compared to non-DST countries, while at higher latitudes, DST-observing countries reported longer average sleep durations. These findings suggest that the influence of DST on sleep may be moderated by geographical location.
Abstract:In recent years, natural language processing (NLP) has become increasingly important in a variety of business applications, including sentiment analysis, text classification, and named entity recognition. In this paper, we propose an approach for company classification using NLP and zero-shot learning. Our method utilizes pre-trained transformer models to extract features from company descriptions, and then applies zero-shot learning to classify companies into relevant categories without the need for specific training data for each category. We evaluate our approach on publicly available datasets of textual descriptions of companies, and demonstrate that it can streamline the process of company classification, thereby reducing the time and resources required in traditional approaches such as the Global Industry Classification Standard (GICS). The results show that this method has potential for automation of company classification, making it a promising avenue for future research in this area.