Abstract:As foundation models become more sophisticated, ensuring their trustworthiness becomes increasingly critical; yet, unlike text and image, the video modality still lacks comprehensive trustworthiness benchmarks. We introduce VMDT (Video-Modal DecodingTrust), the first unified platform for evaluating text-to-video (T2V) and video-to-text (V2T) models across five key trustworthiness dimensions: safety, hallucination, fairness, privacy, and adversarial robustness. Through our extensive evaluation of 7 T2V models and 19 V2T models using VMDT, we uncover several significant insights. For instance, all open-source T2V models evaluated fail to recognize harmful queries and often generate harmful videos, while exhibiting higher levels of unfairness compared to image modality models. In V2T models, unfairness and privacy risks rise with scale, whereas hallucination and adversarial robustness improve -- though overall performance remains low. Uniquely, safety shows no correlation with model size, implying that factors other than scale govern current safety levels. Our findings highlight the urgent need for developing more robust and trustworthy video foundation models, and VMDT provides a systematic framework for measuring and tracking progress toward this goal. The code is available at https://sunblaze-ucb.github.io/VMDT-page/.
Abstract:Multi-agent debate often wastes compute by using a fixed adversarial stance, aggregating without deliberation, or stopping on heuristics. We introduce MACI, an active controller with two independent dials that decouple information from behavior: an information dial that gates evidence by quality, and a behavior dial that schedules contentiousness from exploration to consolidation. A moderator tracks disagreement, overlap, evidence quality, and argument quality, and halts when gains plateau. We provide theory-lite guarantees for nonincreasing dispersion and provable termination, with a budget-feasible scheduler. Across clinical diagnosis and news-bias tasks, MACI improves accuracy and calibration while reducing tokens, and converts residual uncertainty into precision RAG plans that specify what to retrieve next. We use a cross-family LLM judge (CRIT) as a conservative soft weight and stop signal, validated for order invariance and judge-swap stability; stability depends on using high-capability judges. MACI turns debate into a budget-aware, measurable, and provably terminating controller.