Abstract:During prediction tasks, models can use any signal they receive to come up with the final answer - including signals that are causally irrelevant. When predicting objects from images, for example, the lighting conditions could be correlated to different targets through selection bias, and an oblivious model might use these signals as shortcuts to discern between various objects. A predictor that uses lighting conditions instead of real object-specific details is obviously undesirable. To address this challenge, we introduce a standard anti-causal prediction model (SAM) that creates a causal framework for analyzing the information pathways influencing our predictor in anti-causal settings. We demonstrate that a classifier satisfying a specific conditional independence criterion will focus solely on the direct causal path from label to image, being counterfactually invariant to the remaining variables. Finally, we propose DISCO, a novel regularization strategy that uses conditional distance correlation to optimize for conditional independence in regression tasks. We can show that DISCO achieves competitive results in different bias mitigation experiments, deeming it a valid alternative to classical kernel-based methods.