Abstract:In the context of mobile navigation in unstructured environments, the predominant approach entails the avoidance of obstacles. The prevailing path planning algorithms are contingent upon deviating from the intended path for an indefinite duration and returning to the closest point on the route after the obstacle is left behind spatially. However, avoiding an obstacle on a path that will be used repeatedly by multiple agents can hinder long-term efficiency and lead to a lasting reliance on an active path planning system. In this study, we propose an alternative approach to mobile navigation in unstructured environments by leveraging the manipulation capabilities of a robotic manipulator mounted on top of a mobile robot. Our proposed framework integrates exteroceptive and proprioceptive feedback to assess the push affordance of obstacles, facilitating their repositioning rather than avoidance. While our preliminary visual estimation takes into account the characteristics of both the obstacle and the surface it relies on, the push affordance estimation module exploits the force feedback obtained by interacting with the obstacle via a robotic manipulator as the guidance signal. The objective of our navigation approach is to enhance the efficiency of routes utilized by multiple agents over extended periods by reducing the overall time spent by a fleet in environments where autonomous infrastructure development is imperative, such as lunar or Martian surfaces.
Abstract:The fields of autonomous systems and robotics are receiving considerable attention in civil applications such as construction, logistics, and firefighting. Nevertheless, the widespread adoption of these technologies is hindered by the necessity for robust processing units to run AI models. Edge-AI solutions offer considerable promise, enabling low-power, cost-effective robotics that can automate civil services, improve safety, and enhance sustainability. This paper presents a novel Edge-AI-enabled drone-based surveillance system for autonomous multi-robot operations at construction sites. Our system integrates a lightweight MCU-based object detection model within a custom-built UAV platform and a 5G-enabled multi-agent coordination infrastructure. We specifically target the real-time obstacle detection and dynamic path planning problem in construction environments, providing a comprehensive dataset specifically created for MCU-based edge applications. Field experiments demonstrate practical viability and identify optimal operational parameters, highlighting our approach's scalability and computational efficiency advantages compared to existing UAV solutions. The present and future roles of autonomous vehicles on construction sites are also discussed, as well as the effectiveness of edge-AI solutions. We share our dataset publicly at github.com/egirgin/storaige-b950
Abstract:Trustworthiness is a crucial concept in the context of human-robot interaction. Cooperative robots must be transparent regarding their decision-making process, especially when operating in a human-oriented environment. This paper presents a comprehensive end-to-end framework aimed at fostering trustworthy bidirectional human-robot interaction in collaborative environments for the social navigation of mobile robots. Our method enables a mobile robot to predict the trajectory of people and adjust its route in a socially-aware manner. In case of conflict between human and robot decisions, detected through visual examination, the route is dynamically modified based on human preference while verbal communication is maintained. We present our pipeline, framework design, and preliminary experiments that form the foundation of our proposition.