Abstract:Robotic systems operating at the edge require efficient online learning algorithms that can continuously adapt to changing environments while processing streaming sensory data. Traditional backpropagation, while effective, conflicts with biological plausibility principles and may be suboptimal for continuous adaptation scenarios. The Predictive Coding (PC) framework offers a biologically plausible alternative with local, Hebbian-like update rules, making it suitable for neuromorphic hardware implementation. However, PC's main limitation is its computational overhead due to multiple inference iterations during training. We present Predictive Coding Network with Temporal Amortization (PCN-TA), which preserves latent states across temporal frames. By leveraging temporal correlations, PCN-TA significantly reduces computational demands while maintaining learning performance. Our experiments on the COIL-20 robotic perception dataset demonstrate that PCN-TA achieves 10% fewer weight updates compared to backpropagation and requires 50% fewer inference steps than baseline PC networks. These efficiency gains directly translate to reduced computational overhead for moving another step toward edge deployment and real-time adaptation support in resource-constrained robotic systems. The biologically-inspired nature of our approach also makes it a promising candidate for future neuromorphic hardware implementations, enabling efficient online learning at the edge.
Abstract:Humans and animals learn throughout their lives from limited amounts of sensed data, both with and without supervision. Autonomous, intelligent robots of the future are often expected to do the same. The existing continual learning (CL) methods are usually not directly applicable to robotic settings: they typically require buffering and a balanced replay of training data. A few-shot online continual learning (FS-OCL) setting has been proposed to address more realistic scenarios where robots must learn from a non-repeated sparse data stream. To enable truly autonomous life-long learning, an additional challenge of detecting novelties and learning new items without supervision needs to be addressed. We address this challenge with our new prototype-based approach called Continually Learning Prototypes (CLP). In addition to being capable of FS-OCL learning, CLP also detects novel objects and learns them without supervision. To mitigate forgetting, CLP utilizes a novel metaplasticity mechanism that adapts the learning rate individually per prototype. CLP is rehearsal-free, hence does not require a memory buffer, and is compatible with neuromorphic hardware, characterized by ultra-low power consumption, real-time processing abilities, and on-chip learning. Indeed, we have open-sourced a simple version of CLP in the neuromorphic software framework Lava, targetting Intel's neuromorphic chip Loihi 2. We evaluate CLP on a robotic vision dataset, OpenLORIS. In a low-instance FS-OCL scenario, CLP shows state-of-the-art results. In the open world, CLP detects novelties with superior precision and recall and learns features of the detected novel classes without supervision, achieving a strong baseline of 99% base class and 65%/76% (5-shot/10-shot) novel class accuracy.