Abstract:In this paper, we propose an LLM-Guided Exemplar Selection framework to address a key limitation in state-of-the-art Human Activity Recognition (HAR) methods: their reliance on large labeled datasets and purely geometric exemplar selection, which often fail to distinguish similar weara-ble sensor activities such as walking, walking upstairs, and walking downstairs. Our method incorporates semantic reasoning via an LLM-generated knowledge prior that captures feature importance, inter-class confusability, and exemplar budget multipliers, and uses it to guide exemplar scoring and selection. These priors are combined with margin-based validation cues, PageRank centrality, hubness penalization, and facility-location optimization to obtain a compact and informative set of exemplars. Evaluated on the UCI-HAR dataset under strict few-shot conditions, the framework achieves a macro F1-score of 88.78%, outperforming classical approaches such as random sampling, herding, and $k$-center. The results show that LLM-derived semantic priors, when integrated with structural and geometric cues, provide a stronger foundation for selecting representative sensor exemplars in few-shot wearable-sensor HAR.
Abstract:In this paper, we propose a novel few-shot optimization with HED-LM (Hybrid Euclidean Distance with Large Language Models) to improve example selection for sensor-based classification tasks. While few-shot prompting enables efficient inference with limited labeled data, its performance largely depends on the quality of selected examples. HED-LM addresses this challenge through a hybrid selection pipeline that filters candidate examples based on Euclidean distance and re-ranks them using contextual relevance scored by large language models (LLMs). To validate its effectiveness, we apply HED-LM to a fatigue detection task using accelerometer data characterized by overlapping patterns and high inter-subject variability. Unlike simpler tasks such as activity recognition, fatigue detection demands more nuanced example selection due to subtle differences in physiological signals. Our experiments show that HED-LM achieves a mean macro F1-score of 69.13$\pm$10.71%, outperforming both random selection (59.30$\pm$10.13%) and distance-only filtering (67.61$\pm$11.39%). These represent relative improvements of 16.6% and 2.3%, respectively. The results confirm that combining numerical similarity with contextual relevance improves the robustness of few-shot prompting. Overall, HED-LM offers a practical solution to improve performance in real-world sensor-based learning tasks and shows potential for broader applications in healthcare monitoring, human activity recognition, and industrial safety scenarios.