Abstract:Data integration approaches are increasingly used to enhance the efficiency and generalizability of studies. However, a key limitation of these methods is the assumption that outcome measures are identical across datasets -- an assumption that often does not hold in practice. Consider the following opioid use disorder (OUD) studies: the XBOT trial and the POAT study, both evaluating the effect of medications for OUD on withdrawal symptom severity (not the primary outcome of either trial). While XBOT measures withdrawal severity using the subjective opiate withdrawal scale, POAT uses the clinical opiate withdrawal scale. We analyze this realistic yet challenging setting where outcome measures differ across studies and where neither study records both types of outcomes. Our paper studies whether and when integrating studies with disparate outcome measures leads to efficiency gains. We introduce three sets of assumptions -- with varying degrees of strength -- linking both outcome measures. Our theoretical and empirical results highlight a cautionary tale: integration can improve asymptotic efficiency only under the strongest assumption linking the outcomes. However, misspecification of this assumption leads to bias. In contrast, a milder assumption may yield finite-sample efficiency gains, yet these benefits diminish as sample size increases. We illustrate these trade-offs via a case study integrating the XBOT and POAT datasets to estimate the comparative effect of two medications for opioid use disorder on withdrawal symptoms. By systematically varying the assumptions linking the SOW and COW scales, we show potential efficiency gains and the risks of bias. Our findings emphasize the need for careful assumption selection when fusing datasets with differing outcome measures, offering guidance for researchers navigating this common challenge in modern data integration.
Abstract:Individualized treatment decisions can improve health outcomes, but using data to make these decisions in a reliable, precise, and generalizable way is challenging with a single dataset. Leveraging multiple randomized controlled trials allows for the combination of datasets with unconfounded treatment assignment to improve the power to estimate heterogeneous treatment effects. This paper discusses several non-parametric approaches for estimating heterogeneous treatment effects using data from multiple trials. We extend single-study methods to a scenario with multiple trials and explore their performance through a simulation study, with data generation scenarios that have differing levels of cross-trial heterogeneity. The simulations demonstrate that methods that directly allow for heterogeneity of the treatment effect across trials perform better than methods that do not, and that the choice of single-study method matters based on the functional form of the treatment effect. Finally, we discuss which methods perform well in each setting and then apply them to four randomized controlled trials to examine effect heterogeneity of treatments for major depressive disorder.