NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA
Abstract:The Transiting Exoplanet Survey Satellite (TESS) has surveyed nearly the entire sky in Full-Frame Image mode with a time resolution of 200 seconds to 30 minutes and a temporal baseline of at least 27 days. In addition to the primary goal of discovering new exoplanets, TESS is exceptionally capable at detecting variable stars, and in particular short-period eclipsing binaries which are relatively common, making up a few percent of all stars, and represent powerful astrophysical laboratories for deep investigations of stellar formation and evolution. We combed Sectors 1-82 of TESS Full-Frame Image data searching for eclipsing binary stars using a neural network that identified ~1.2 million stars with eclipse-like features. Of these, we have performed an in-depth analysis on ~60,000 targets using automated methods and manual inspection by citizen scientists. Here we present a catalog of 10001 uniformly-vetted and -validated eclipsing binary stars that passed all our ephemeris and photocenter tests, as well as complementary visual inspection. Of these, 7936 are new eclipsing binaries while the remaining 2065 are known systems for which we update the published ephemerides. We outline the detection and analysis of the targets, discuss the properties of the sample, and highlight potentially interesting systems. Finally, we also provide a list of ~900,000 unvetted and unvalidated targets for which the neural network found eclipse-like features with a score higher than 0.9, and for which there are no known eclipsing binaries within a sky-projected separation of a TESS pixel (~21 arcsec).
Abstract:In the identification of new planetary candidates in transit surveys, the employment of Deep Learning models proved to be essential to efficiently analyse a continuously growing volume of photometric observations. To further improve the robustness of these models, it is necessary to exploit the complementarity of data collected from different transit surveys such as NASA's Kepler, Transiting Exoplanet Survey Satellite (TESS), and, in the near future, the ESA PLAnetary Transits and Oscillation of stars (PLATO) mission. In this work, we present a Deep Learning model, named DART-Vetter, able to distinguish planetary candidates (PC) from false positives signals (NPC) detected by any potential transiting survey. DART-Vetter is a Convolutional Neural Network that processes only the light curves folded on the period of the relative signal, featuring a simpler and more compact architecture with respect to other triaging and/or vetting models available in the literature. We trained and tested DART-Vetter on several dataset of publicly available and homogeneously labelled TESS and Kepler light curves in order to prove the effectiveness of our model. Despite its simplicity, DART-Vetter achieves highly competitive triaging performance, with a recall rate of 91% on an ensemble of TESS and Kepler data, when compared to Exominer and Astronet-Triage. Its compact, open source and easy to replicate architecture makes DART-Vetter a particularly useful tool for automatizing triaging procedures or assisting human vetters, showing a discrete generalization on TCEs with Multiple Event Statistic (MES) > 20 and orbital period < 50 days.