Abstract:The Transiting Exoplanet Survey Satellite (TESS) has surveyed nearly the entire sky in Full-Frame Image mode with a time resolution of 200 seconds to 30 minutes and a temporal baseline of at least 27 days. In addition to the primary goal of discovering new exoplanets, TESS is exceptionally capable at detecting variable stars, and in particular short-period eclipsing binaries which are relatively common, making up a few percent of all stars, and represent powerful astrophysical laboratories for deep investigations of stellar formation and evolution. We combed Sectors 1-82 of TESS Full-Frame Image data searching for eclipsing binary stars using a neural network that identified ~1.2 million stars with eclipse-like features. Of these, we have performed an in-depth analysis on ~60,000 targets using automated methods and manual inspection by citizen scientists. Here we present a catalog of 10001 uniformly-vetted and -validated eclipsing binary stars that passed all our ephemeris and photocenter tests, as well as complementary visual inspection. Of these, 7936 are new eclipsing binaries while the remaining 2065 are known systems for which we update the published ephemerides. We outline the detection and analysis of the targets, discuss the properties of the sample, and highlight potentially interesting systems. Finally, we also provide a list of ~900,000 unvetted and unvalidated targets for which the neural network found eclipse-like features with a score higher than 0.9, and for which there are no known eclipsing binaries within a sky-projected separation of a TESS pixel (~21 arcsec).
Abstract:The Transiting Exoplanet Survey Satellite (TESS) mission measured light from stars in ~85% of the sky throughout its two-year primary mission, resulting in millions of TESS 30-minute cadence light curves to analyze in the search for transiting exoplanets. To search this vast dataset, we aim to provide an approach that is both computationally efficient, produces highly performant predictions, and minimizes the required human search effort. We present a convolutional neural network that we train to identify short period variables. To make a prediction for a given light curve, our network requires no prior target parameters identified using other methods. Our network performs inference on a TESS 30-minute cadence light curve in ~5ms on a single GPU, enabling large scale archival searches. We present a collection of 14156 short-period variables identified by our network. The majority of our identified variables fall into two prominent populations, one of short-period main sequence binaries and another of Delta Scuti stars. Our neural network model and related code is additionally provided as open-source code for public use and extension.
Abstract:The Transiting Exoplanet Survey Satellite (TESS) mission measured light from stars in ~75% of the sky throughout its two year primary mission, resulting in millions of TESS 30-minute cadence light curves to analyze in the search for transiting exoplanets. To search this vast data trove for transit signals, we aim to provide an approach that is both computationally efficient and produces highly performant predictions. This approach minimizes the required human search effort. We present a convolutional neural network, which we train to identify planetary transit signals and dismiss false positives. To make a prediction for a given light curve, our network requires no prior transit parameters identified using other methods. Our network performs inference on a TESS 30-minute cadence light curve in ~5ms on a single GPU, enabling large scale archival searches. We present 181 new planet candidates identified by our network, which pass subsequent human vetting designed to rule out false positives. Our neural network model is additionally provided as open-source code for public use and extension.