Abstract:Biodiversity research requires complete and detailed information to study ecosystem dynamics at different scales. Employing data-driven methods like Machine Learning is getting traction in ecology and more specific biodiversity, offering alternative modelling pathways. For these methods to deliver accurate results there is the need for large, curated and multimodal datasets that offer granular spatial and temporal resolutions. In this work, we introduce BioCube, a multimodal, fine-grained global dataset for ecology and biodiversity research. BioCube incorporates species observations through images, audio recordings and descriptions, environmental DNA, vegetation indices, agricultural, forest, land indicators, and high-resolution climate variables. All observations are geospatially aligned under the WGS84 geodetic system, spanning from 2000 to 2020. The dataset will become available at https://huggingface.co/datasets/BioDT/BioCube while the acquisition and processing code base at https://github.com/BioDT/bfm-data.
Abstract:Federated learning (FL) for time series forecasting (TSF) enables clients with privacy-sensitive time series (TS) data to collaboratively learn accurate forecasting models, for example, in energy load prediction. Unfortunately, privacy risks in FL persist, as servers can potentially reconstruct clients' training data through gradient inversion attacks (GIA). Although GIA is demonstrated for image classification tasks, little is known about time series regression tasks. In this paper, we first conduct an extensive empirical study on inverting TS data across 4 TSF models and 4 datasets, identifying the unique challenges of reconstructing both observations and targets of TS data. We then propose TS-Inverse, a novel GIA that improves the inversion of TS data by (i) learning a gradient inversion model that outputs quantile predictions, (ii) a unique loss function that incorporates periodicity and trend regularization, and (iii) regularization according to the quantile predictions. Our evaluations demonstrate a remarkable performance of TS-Inverse, achieving at least a 2x-10x improvement in terms of the sMAPE metric over existing GIA methods on TS data. Code repository: https://github.com/Capsar/ts-inverse