Abstract:Feature steering has emerged as a promising approach for controlling LLM behavior through direct manipulation of internal representations, offering advantages over prompt engineering. However, its practical effectiveness in real-world applications remains poorly understood, particularly regarding potential trade-offs with output quality. We show that feature steering methods substantially degrade model performance even when successfully controlling target behaviors, a critical trade-off. Specifically, we evaluate Goodfire's Auto Steer against prompt engineering baselines across 14 steering queries (covering innocuous and safety-relevant behaviors) on 171 Massive Multitask Language Understanding (MMLU) questions using Llama-8B and Llama-70B, measuring accuracy, coherence, and behavioral control. Our findings show that Auto Steer successfully modifies target behaviors (achieving scores of 3.33 vs. 2.98 for prompting on Llama-8B and 3.57 vs. 3.10 on Llama-70B), but causes dramatic performance degradation: accuracy on the MMLU questions drops from 66% to 46% on Llama-8B and 87% to 73% on Llama-70B, with coherence falling from 4.62 to 2.24 and 4.94 to 3.89 respectively. Simple prompting achieves the best overall balance. These findings highlight limitations of current feature steering methods for practical deployment where task performance cannot be sacrificed. More broadly, our work demonstrates that mechanistic control methods face fundamental capability-behavior trade-offs that must be empirically characterized before deployment.
Abstract:Chain-of-thought (CoT) outputs let us read a model's step-by-step reasoning. Since any long, serial reasoning process must pass through this textual trace, the quality of the CoT is a direct window into what the model is thinking. This visibility could help us spot unsafe or misaligned behavior (monitorability), but only if the CoT is transparent about its internal reasoning (faithfulness). Fully measuring faithfulness is difficult, so researchers often focus on examining the CoT in cases where the model changes its answer after adding a cue to the input. This proxy finds some instances of unfaithfulness but loses information when the model maintains its answer, and does not investigate aspects of reasoning not tied to the cue. We extend these results to a more holistic sense of monitorability by introducing verbosity: whether the CoT lists every factor needed to solve the task. We combine faithfulness and verbosity into a single monitorability score that shows how well the CoT serves as the model's external `working memory', a property that many safety schemes based on CoT monitoring depend on. We evaluate instruction-tuned and reasoning models on BBH, GPQA, and MMLU. Our results show that models can appear faithful yet remain hard to monitor when they leave out key factors, and that monitorability differs sharply across model families. We release our evaluation code using the Inspect library to support reproducible future work.