Abstract:In this paper, we introduce a threshold-based framework for multiclass classification that generalizes the standard argmax rule. This is done by replacing the probabilistic interpretation of softmax outputs with a geometric one on the multidimensional simplex, where the classification depends on a multidimensional threshold. This change of perspective enables for any trained classification network an a posteriori optimization of the classification score by means of threshold tuning, as usually carried out in the binary setting. This allows a further refinement of the prediction capability of any network. Moreover, this multidimensional threshold-based setting makes it possible to define score-oriented losses, which are based on the interpretation of the threshold as a random variable. Our experiments show that the multidimensional threshold tuning yields consistent performance improvements across various networks and datasets, and that the proposed multiclass score-oriented losses are competitive with standard loss functions, resembling the advantages observed in the binary case.
Abstract:A solar active region can significantly disrupt the Sun Earth space environment, often leading to severe space weather events such as solar flares and coronal mass ejections. As a consequence, the automatic classification of active region groups is the crucial starting point for accurately and promptly predicting solar activity. This study presents our results concerned with the application of deep learning techniques to the classification of active region cutouts based on the Mount Wilson classification scheme. Specifically, we have explored the latest advancements in image classification architectures, from Convolutional Neural Networks to Vision Transformers, and reported on their performances for the active region classification task, showing that the crucial point for their effectiveness consists in a robust training process based on the latest advances in the field.