Abstract:Agentic AI pipelines suffer from a hidden inefficiency: they frequently reconstruct identical intermediate logic, such as metric normalization or chart scaffolding, even when the user's natural language phrasing is entirely novel. Conventional boundary caching fails to capture this inefficiency because it treats inference as a monolithic black box. We introduce SemanticALLI, a pipeline-aware architecture within Alli (PMG's marketing intelligence platform), designed to operationalize redundant reasoning. By decomposing generation into Analytic Intent Resolution (AIR) and Visualization Synthesis (VS), SemanticALLI elevates structured intermediate representations (IRs) to first-class, cacheable artifacts. The impact of caching within the agentic loop is substantial. In our evaluation, baseline monolithic caching caps at a 38.7% hit rate due to linguistic variance. In contrast, our structured approach allows for an additional stage, the Visualization Synthesis stage, to achieve an 83.10% hit rate, bypassing 4,023 LLM calls with a median latency of just 2.66 ms. This internal reuse reduces total token consumption, offering a practical lesson for AI system design: even when users rarely repeat themselves, the pipeline often does, at stable, structured checkpoints where caching is most reliable.
Abstract:Foundational game-image encoders often overfit to game-specific visual styles, undermining performance on downstream tasks when applied to new games. We present a method that combines contrastive learning and domain-adversarial training to learn game-invariant visual features. By simultaneously encouraging similar content to cluster and discouraging game-specific cues via an adversarial domain classifier, our approach produces embeddings that generalize across diverse games. Experiments on the Bingsu game-image dataset (10,000 screenshots from 10 games) demonstrate that after only a few training epochs, our model's features no longer cluster by game, indicating successful invariance and potential for improved cross-game transfer (e.g., glitch detection) with minimal fine-tuning. This capability paves the way for more generalizable game vision models that require little to no retraining on new games.