Abstract:Almost all EEG-based brain-computer interfaces (BCIs) need some labeled subject-specific data to calibrate a new subject, as neural responses are different across subjects to even the same stimulus. So, a major challenge in developing high-performance and user-friendly BCIs is to cope with such individual differences so that the calibration can be reduced or even completely eliminated. This paper focuses on the latter. More specifically, we consider an offline application scenario, in which we have unlabeled EEG trials from a new subject, and would like to accurately label them by leveraging auxiliary labeled EEG trials from other subjects in the same task. To accommodate the individual differences, we propose a novel unsupervised approach to align the EEG trials from different subjects in the Euclidean space to make them more consistent. It has three desirable properties: 1) the aligned trial lie in the Euclidean space, which can be used by any Euclidean space signal processing and machine learning approach; 2) it can be computed very efficiently; and, 3) it does not need any labeled trials from the new subject. Experiments on motor imagery and event-related potentials demonstrated the effectiveness and efficiency of our approach.
Abstract:Deep learning, including convolutional neural networks (CNNs), has started finding applications in brain-computer interfaces (BCIs). However, so far most such approaches focused on BCI classification problems. This paper extends EEGNet, a 3-layer CNN model for BCI classification, to BCI regression, and also utilizes a novel spectral meta-learner for regression (SMLR) approach to aggregate multiple EEGNets for improved performance. Our model uses the power spectral density (PSD) of EEG signals as the input. Compared with raw EEG inputs, the PSD inputs can reduce the computational cost significantly, yet achieve much better regression performance. Experiments on driver drowsiness estimation from EEG signals demonstrate the outstanding performance of our approach.
Abstract:The electroencephalogram (EEG) is the most widely used input for brain computer interfaces (BCIs), and common spatial pattern (CSP) is frequently used to spatially filter it to increase its signal-to-noise ratio. However, CSP is a supervised filter, which needs some subject-specific calibration data to design. This is time-consuming and not user-friendly. A promising approach for shortening or even completely eliminating this calibration session is transfer learning, which leverages relevant data or knowledge from other subjects or tasks. This paper reviews three existing approaches for incorporating transfer learning into CSP, and also proposes a new transfer learning enhanced CSP approach. Experiments on motor imagery classification demonstrate their effectiveness. Particularly, our proposed approach achieves the best performance when the number of target domain calibration samples is small.
Abstract:Acquisition of labeled training samples for affective computing is usually costly and time-consuming, as affects are intrinsically subjective, subtle and uncertain, and hence multiple human assessors are needed to evaluate each affective sample. Particularly, for affect estimation in the 3D space of valence, arousal and dominance, each assessor has to perform the evaluations in three dimensions, which makes the labeling problem even more challenging. Many sophisticated machine learning approaches have been proposed to reduce the data labeling requirement in various other domains, but so far few have considered affective computing. This paper proposes two multi-task active learning for regression approaches, which select the most beneficial samples to label, by considering the three affect primitives simultaneously. Experimental results on the VAM corpus demonstrated that our optimal sample selection approaches can result in better estimation performance than random selection and several traditional single-task active learning approaches. Thus, they can help alleviate the data labeling problem in affective computing, i.e., better estimation performance can be obtained from fewer labeling queries.
Abstract:The electroencephalogram (EEG) is the most popular form of input for brain computer interfaces (BCIs). However, it can be easily contaminated by various artifacts and noise, e.g., eye blink, muscle activities, powerline noise, etc. Therefore, the EEG signals are often filtered both spatially and temporally to increase the signal-to-noise ratio before they are fed into a machine learning algorithm for recognition. This paper considers spatial filtering, particularly, the common spatial pattern (CSP) filters for EEG classification. In binary classification, CSP seeks a set of filters to maximize the variance for one class while minimizing it for the other. We first introduce the traditional solution, and then a new solution based on a slightly different objective function. We performed comprehensive experiments on motor imagery to compare the two approaches, and found that generally the traditional CSP solution still gives better results. We also showed that adding regularization to the covariance matrices can improve the final classification performance, no matter which objective function is used.
Abstract:Affective computing has become a very important research area in human-machine interaction. However, affects are subjective, subtle, and uncertain. So, it is very difficult to obtain a large number of labeled training samples, compared with the number of possible features we could extract. Thus, dimensionality reduction is critical in affective computing. This paper presents our preliminary study on dimensionality reduction for affect classification. Five popular dimensionality reduction approaches are introduced and compared. Experiments on the DEAP dataset showed that no approach can universally outperform others, and performing classification using the raw features directly may not always be a bad choice.
Abstract:Regression problems are pervasive in real-world applications. Generally a substantial amount of labeled samples are needed to build a regression model with good generalization ability. However, many times it is relatively easy to collect a large number of unlabeled samples, but time-consuming or expensive to label them. Active learning for regression (ALR) is a methodology to reduce the number of labeled samples, by selecting the most beneficial ones to label, instead of random selection. This paper proposes two new ALR approaches based on greedy sampling (GS). The first approach (GSy) selects new samples to increase the diversity in the output space, and the second (iGS) selects new samples to increase the diversity in both input and output spaces. Extensive experiments on 12 UCI and CMU StatLib datasets from various domains, and on 15 subjects on EEG-based driver drowsiness estimation, verified their effectiveness and robustness.
Abstract:Multi-view datasets are frequently encountered in learning tasks, such as web data mining and multimedia information analysis. Given a multi-view dataset, traditional learning algorithms usually decompose it into several single-view datasets, from each of which a single-view model is learned. In contrast, a multi-view learning algorithm can achieve better performance by cooperative learning on the multi-view data. However, existing multi-view approaches mainly focus on the views that are visible and ignore the hidden information behind the visible views, which usually contains some intrinsic information of the multi-view data, or vice versa. To address this problem, this paper proposes a multi-view fuzzy logic system, which utilizes both the hidden information shared by the multiple visible views and the information of each visible view. Extensive experiments were conducted to validate its effectiveness.
Abstract:Ensemble learning is a powerful approach to construct a strong learner from multiple base learners. The most popular way to aggregate an ensemble of classifiers is majority voting, which assigns a sample to the class that most base classifiers vote for. However, improved performance can be obtained by assigning weights to the base classifiers according to their accuracy. This paper proposes an agreement rate initialized maximum likelihood estimator (ARIMLE) to optimally fuse the base classifiers. ARIMLE first uses a simplified agreement rate method to estimate the classification accuracy of each base classifier from the unlabeled samples, then employs the accuracies to initialize a maximum likelihood estimator (MLE), and finally uses the expectation-maximization algorithm to refine the MLE. Extensive experiments on visually evoked potential classification in a brain-computer interface application show that ARIMLE outperforms majority voting, and also achieves better or comparable performance with several other state-of-the-art classifier combination approaches.
Abstract:There are many important regression problems in real-world brain-computer interface (BCI) applications, e.g., driver drowsiness estimation from EEG signals. This paper considers offline analysis: given a pool of unlabeled EEG epochs recorded during driving, how do we optimally select a small number of them to label so that an accurate regression model can be built from them to label the rest? Active learning is a promising solution to this problem, but interestingly, to our best knowledge, it has not been used for regression problems in BCI so far. This paper proposes a novel enhanced batch-mode active learning (EBMAL) approach for regression, which improves upon a baseline active learning algorithm by increasing the reliability, representativeness and diversity of the selected samples to achieve better regression performance. We validate its effectiveness using driver drowsiness estimation from EEG signals. However, EBMAL is a general approach that can also be applied to many other offline regression problems beyond BCI.