Abstract:Neural Radiance Fields (NeRF) can generate highly realistic novel views. However, editing 3D scenes represented by NeRF across 360-degree views, particularly removing objects while preserving geometric and photometric consistency, remains a challenging problem due to NeRF's implicit scene representation. In this paper, we propose InpaintNeRF360, a unified framework that utilizes natural language instructions as guidance for inpainting NeRF-based 3D scenes.Our approach employs a promptable segmentation model by generating multi-modal prompts from the encoded text for multiview segmentation. We apply depth-space warping to enforce viewing consistency in the segmentations, and further refine the inpainted NeRF model using perceptual priors to ensure visual plausibility. InpaintNeRF360 is capable of simultaneously removing multiple objects or modifying object appearance based on text instructions while synthesizing 3D viewing-consistent and photo-realistic inpainting. Through extensive experiments on both unbounded and frontal-facing scenes trained through NeRF, we demonstrate the effectiveness of our approach and showcase its potential to enhance the editability of implicit radiance fields.
Abstract:We propose NEMTO, the first end-to-end neural rendering pipeline to model 3D transparent objects with complex geometry and unknown indices of refraction. Commonly used appearance modeling such as the Disney BSDF model cannot accurately address this challenging problem due to the complex light paths bending through refractions and the strong dependency of surface appearance on illumination. With 2D images of the transparent object as input, our method is capable of high-quality novel view and relighting synthesis. We leverage implicit Signed Distance Functions (SDF) to model the object geometry and propose a refraction-aware ray bending network to model the effects of light refraction within the object. Our ray bending network is more tolerant to geometric inaccuracies than traditional physically-based methods for rendering transparent objects. We provide extensive evaluations on both synthetic and real-world datasets to demonstrate our high-quality synthesis and the applicability of our method.