Abstract:Continuous advancements in robotics and AI are driving the integration of robots from industry into everyday environments. However, dynamic and unpredictable human activities in daily lives would directly or indirectly conflict with robot actions. Besides, due to the social attributes of such human-induced conflicts, solutions are not always unique and depend highly on the user's personal preferences. To address these challenges and facilitate the development of household robots, we propose COMMET, a system for human-induced COnflicts in Mobile Manipulation of Everyday Tasks. COMMET employs a hybrid detection approach, which begins with multi-modal retrieval and escalates to fine-tuned model inference for low-confidence cases. Based on collected user preferred options and settings, GPT-4o will be used to summarize user preferences from relevant cases. In preliminary studies, our detection module shows better accuracy and latency compared with GPT models. To facilitate future research, we also design a user-friendly interface for user data collection and demonstrate an effective workflow for real-world deployments.
Abstract:Developing autonomous home robots controlled by natural language has long been a pursuit of human. While advancements in large language models (LLMs) and embodied intelligence make this goal closer, several challenges persist: the lack of a unified benchmark for more complex robot tasks, limited evaluation methods and metrics, data incompatibility between LLMs and mobile manipulation trajectories. To address these issues, we introduce Embodied Mobile Manipulation in Open Environments (EMMOE), which requires agents to interpret user instructions and execute long-horizon everyday tasks in continuous space. EMMOE seamlessly integrates high-level and low-level embodied tasks into a unified framework, along with three new metrics for more diverse assessment. Additionally, we collect EMMOE-100, which features in various task attributes, detailed process annotations, re-plans after failures, and two sub-datasets for LLM training. Furthermore, we design HomieBot, a sophisticated agent system consists of LLM with Direct Preference Optimization (DPO), light weighted navigation and manipulation models, and multiple error detection mechanisms. Finally, we demonstrate HomieBot's performance and the evaluation of different models and policies.