Abstract:The Abu Dhabi Autonomous Racing League(A2RL) x Drone Champions League competition(DCL) requires teams to perform high-speed autonomous drone racing using only a single camera and a low-quality inertial measurement unit -- a minimal sensor set that mirrors expert human drone racing pilots. This sensor limitation makes the system susceptible to drift from Visual-Inertial Odometry (VIO), particularly during long and fast flights with aggressive maneuvers. This paper presents the system developed for the championship, which achieved a competitive performance. Our approach corrected VIO drift by fusing its output with global position measurements derived from a YOLO-based gate detector using a Kalman filter. A perception-aware planner generated trajectories that balance speed with the need to keep gates visible for the perception system. The system demonstrated high performance, securing podium finishes across multiple categories: third place in the AI Grand Challenge with top speed of 43.2 km/h, second place in the AI Drag Race with over 59 km/h, and second place in the AI Multi-Drone Race. We detail the complete architecture and present a performance analysis based on experimental data from the competition, contributing our insights on building a successful system for monocular vision-based autonomous drone flight.




Abstract:We present an integrated UAV-hexapod robotic system designed for GNSS-denied maritime operations, capable of autonomous deployment and retrieval of a hexapod robot via a winch mechanism installed on a UAV. This system is intended to address the challenges of localization, control, and mobility in dynamic maritime environments. Our solution leverages sensor fusion techniques, combining optical flow, LiDAR, and depth data for precise localization. Experimental results demonstrate the effectiveness of this system in real-world scenarios, validating its performance during field tests in both controlled and operational conditions in the MBZIRC 2023 Maritime Challenge.