Abstract:Multi-robot coordination often exhibits hierarchical structure, with some robots' decisions depending on the planned behaviors of others. While game theory provides a principled framework for such interactions, existing solvers struggle to handle mixed information structures that combine simultaneous (Nash) and hierarchical (Stackelberg) decision-making. We study N-robot forest-structured mixed-hierarchy games, in which each robot acts as a Stackelberg leader over its subtree while robots in different branches interact via Nash equilibria. We derive the Karush-Kuhn-Tucker (KKT) first-order optimality conditions for this class of games and show that they involve increasingly high-order derivatives of robots' best-response policies as the hierarchy depth grows, rendering a direct solution intractable. To overcome this challenge, we introduce a quasi-policy approximation that removes higher-order policy derivatives and develop an inexact Newton method for efficiently solving the resulting approximated KKT systems. We prove local exponential convergence of the proposed algorithm for games with non-quadratic objectives and nonlinear constraints. The approach is implemented in a highly optimized Julia library (MixedHierarchyGames.jl) and evaluated in simulated experiments, demonstrating real-time convergence for complex mixed-hierarchy information structures.
Abstract:In this paper, we study the Multi-Start Team Orienteering Problem (MSTOP), a mission re-planning problem where vehicles are initially located away from the depot and have different amounts of fuel. We consider/assume the goal of multiple vehicles is to travel to maximize the sum of collected profits under resource (e.g., time, fuel) consumption constraints. Such re-planning problems occur in a wide range of intelligent UAS applications where changes in the mission environment force the operation of multiple vehicles to change from the original plan. To solve this problem with deep reinforcement learning (RL), we develop a policy network with self-attention on each partial tour and encoder-decoder attention between the partial tour and the remaining nodes. We propose a modified REINFORCE algorithm where the greedy rollout baseline is replaced by a local mini-batch baseline based on multiple, possibly non-duplicate sample rollouts. By drawing multiple samples per training instance, we can learn faster and obtain a stable policy gradient estimator with significantly fewer instances. The proposed training algorithm outperforms the conventional greedy rollout baseline, even when combined with the maximum entropy objective.