Abstract:This paper presents a novel wireless silent speech interface (SSI) integrating multi-channel textile-based EMG electrodes into headphone earmuff for real-time, hands-free communication. Unlike conventional patch-based EMG systems, which require large-area electrodes on the face or neck, our approach ensures comfort, discretion, and wearability while maintaining robust silent speech decoding. The system utilizes four graphene/PEDOT:PSS-coated textile electrodes to capture speech-related neuromuscular activity, with signals processed via a compact ESP32-S3-based wireless readout module. To address the challenge of variable skin-electrode coupling, we propose a 1D SE-ResNet architecture incorporating squeeze-and-excitation (SE) blocks to dynamically adjust per-channel attention weights, enhancing robustness against motion-induced impedance variations. The proposed system achieves 96% accuracy on 10 commonly used voice-free control words, outperforming conventional single-channel and non-adaptive baselines. Experimental validation, including XAI-based attention analysis and t-SNE feature visualization, confirms the adaptive channel selection capability and effective feature extraction of the model. This work advances wearable EMG-based SSIs, demonstrating a scalable, low-power, and user-friendly platform for silent communication, assistive technologies, and human-computer interaction.
Abstract:Ankle exoskeletons have garnered considerable interest for their potential to enhance mobility and reduce fall risks, particularly among the aging population. The efficacy of these devices relies on accurate real-time prediction of the user's intended movements through sensor-based inputs. This paper presents a novel motion prediction framework that integrates three Inertial Measurement Units (IMUs) and eight surface Electromyography (sEMG) sensors to capture both kinematic and muscular activity data. A comprehensive set of activities, representative of everyday movements in barrier-free environments, was recorded for the purpose. Our findings reveal that Convolutional Neural Networks (CNNs) slightly outperform Long Short-Term Memory (LSTM) networks on a dataset of five motion tasks, achieving classification accuracies of $96.5 \pm 0.8 \%$ and $87.5 \pm 2.9 \%$, respectively. Furthermore, we demonstrate the system's proficiency in transfer learning, enabling accurate motion classification for new subjects using just ten samples per class for finetuning. The robustness of the model is demonstrated by its resilience to sensor failures resulting in absent signals, maintaining reliable performance in real-world scenarios. These results underscore the potential of deep learning algorithms to enhance the functionality and safety of ankle exoskeletons, ultimately improving their usability in daily life.