Abstract:Reliable digital twins of lithium-ion batteries must achieve high physical fidelity with sub-millisecond speed. In this work, we benchmark three operator-learning surrogates for the Single Particle Model (SPM): Deep Operator Networks (DeepONets), Fourier Neural Operators (FNOs) and a newly proposed parameter-embedded Fourier Neural Operator (PE-FNO), which conditions each spectral layer on particle radius and solid-phase diffusivity. Models are trained on simulated trajectories spanning four current families (constant, triangular, pulse-train, and Gaussian-random-field) and a full range of State-of-Charge (SOC) (0 % to 100 %). DeepONet accurately replicates constant-current behaviour but struggles with more dynamic loads. The basic FNO maintains mesh invariance and keeps concentration errors below 1 %, with voltage mean-absolute errors under 1.7 mV across all load types. Introducing parameter embedding marginally increases error, but enables generalisation to varying radii and diffusivities. PE-FNO executes approximately 200 times faster than a 16-thread SPM solver. Consequently, PE-FNO's capabilities in inverse tasks are explored in a parameter estimation task with Bayesian optimisation, recovering anode and cathode diffusivities with 1.14 % and 8.4 % mean absolute percentage error, respectively, and 0.5918 percentage points higher error in comparison with classical methods. These results pave the way for neural operators to meet the accuracy, speed and parametric flexibility demands of real-time battery management, design-of-experiments and large-scale inference. PE-FNO outperforms conventional neural surrogates, offering a practical path towards high-speed and high-fidelity electrochemical digital twins.
Abstract:Estimating state of health is a critical function of a battery management system but remains challenging due to the variability of operating conditions and usage requirements of real applications. As a result, techniques based on fitting equivalent circuit models may exhibit inaccuracy at extremes of performance and over long-term ageing, or instability of parameter estimates. Pure data-driven techniques, on the other hand, suffer from lack of generality beyond their training dataset. In this paper, we propose a hybrid approach combining data- and model-driven techniques for battery health estimation. Specifically, we demonstrate a Bayesian data-driven method, Gaussian process regression, to estimate model parameters as functions of states, operating conditions, and lifetime. Computational efficiency is ensured through a recursive approach yielding a unified joint state-parameter estimator that learns parameter dynamics from data and is robust to gaps and varying operating conditions. Results show the efficacy of the method, on both simulated and measured data, including accurate estimates and forecasts of battery capacity and internal resistance. This opens up new opportunities to understand battery ageing in real applications.