Abstract:The widespread use of Exogenous Organic Matter in agriculture necessitates monitoring to assess its effects on soil and crop health. This study evaluates optical Sentinel-2 satellite imagery for detecting digestate application, a practice that enhances soil fertility but poses environmental risks like microplastic contamination and nitrogen losses. In the first instance, Sentinel-2 satellite image time series (SITS) analysis of specific indices (EOMI, NDVI, EVI) was used to characterize EOM's spectral behavior after application on the soils of four different crop types in Thessaly, Greece. Furthermore, Machine Learning (ML) models (namely Random Forest, k-NN, Gradient Boosting and a Feed-Forward Neural Network), were used to investigate digestate presence detection, achieving F1-scores up to 0.85. The findings highlight the potential of combining remote sensing and ML for scalable and cost-effective monitoring of EOM applications, supporting precision agriculture and sustainability.
Abstract:Effective weed management is crucial for improving agricultural productivity, as weeds compete with crops for vital resources like nutrients and water. Accurate maps of weed management methods are essential for policymakers to assess farmer practices, evaluate impacts on vegetation health, biodiversity, and climate, as well as ensure compliance with policies and subsidies. However, monitoring weed management methods is challenging as commonly rely on on-ground field surveys, which are often costly, time-consuming and subject to delays. In order to tackle this problem, we leverage Earth Observation (EO) data and Machine Learning (ML). Specifically, we developed an ML approach for mapping four distinct weed management methods (Mowing, Tillage, Chemical-spraying, and No practice) in orchards using satellite image time series (SITS) data from two different sources: Sentinel-2 (S2) and PlanetScope (PS). The findings demonstrate the potential of ML-driven remote sensing to enhance the efficiency and accuracy of weed management mapping in orchards.