Abstract:Advanced fifth generation (5G) and beyond (B5G) communication networks have revolutionized wireless technologies, supporting ultra-high data rates, low latency, and massive connectivity. However, they also introduce vulnerabilities, particularly in decentralized Industrial Internet of Things (IIoT) environments. Traditional cryptographic methods struggle with scalability and complexity, leading researchers to explore Artificial Intelligence (AI)-driven physical layer techniques for secure communications. In this context, this paper focuses on the utilization of Machine and Deep Learning (ML/DL) techniques to tackle with the common problem of eavesdropping detection. To this end, a simulated industrial B5G heterogeneous wireless network is used to evaluate the performance of various ML/DL models, including Random Forests (RF), Deep Convolutional Neural Networks (DCNN), and Long Short-Term Memory (LSTM) networks. These models classify users as either legitimate or malicious ones based on channel state information (CSI), position data, and transmission power. According to the presented numerical results, DCNN and RF models achieve a detection accuracy approaching 100\% in identifying eavesdroppers with zero false alarms. In general, this work underlines the great potential of combining AI and Physical Layer Security (PLS) for next-generation wireless networks in order to address evolving security threats.
Abstract:Stacked intelligent metasurfaces (SIMs) have recently gained significant interest since they enable precoding in the wave domain that comes with increased processing capability and reduced energy consumption. The study of SIMs and high frequency propagation make the study of the performance in the near field of crucial importance. Hence, in this work, we focus on SIM-assisted multiuser multiple-input multiple-output (MIMO) systems operating in the near field region. To this end, we formulate the weighted sum rate maximisation problem in terms of the transmit power and the phase shifts of the SIM. By applying a block coordinate descent (BCD)-relied algorithm, numerical results show the enhanced performance of the SIM in the near field with respect to the far field.
Abstract:Stacked intelligent metasurface (SIM) is an emerging design that consists of multiple layers of metasurfaces. A SIM enables holographic multiple-input multiple-output (HMIMO) precoding in the wave domain, which results in the reduction of energy consumption and hardware cost. On the ground of multiuser beamforming, this letter focuses on the downlink achievable rate and its maximization. Contrary to previous works on multiuser SIM, we consider statistical channel state information (CSI) as opposed to instantaneous CSI to overcome challenges such as large overhead. Also, we examine the performance of large surfaces. We apply an alternating optimization (AO) algorithm regarding the phases of the SIM and the allocated transmit power. Simulations illustrate the performance of the considered large SIM-assisted design as well as the comparison between different CSI considerations.