Microsoft Research India
Abstract:AI power demand is growing unprecedentedly thanks to the high power density of AI compute and the emerging inferencing workload. On the supply side, abundant wind power is waiting for grid access in interconnection queues. In this light, this paper argues bringing AI workload to modular compute clusters co-located in wind farms. Our deployment right-sizing strategy makes it economically viable to deploy more than 6 million high-end GPUs today that could consume cheap, green power at its source. We built Heron, a cross-site software router, that could efficiently leverage the complementarity of power generation across wind farms by routing AI inferencing workload around power drops. Using 1-week ofcoding and conversation production traces from Azure and (real) variable wind power traces, we show how Heron improves aggregate goodput of AI compute by up to 80% compared to the state-of-the-art.
Abstract:The widespread adoption of language models (LMs) across multiple industries has caused huge surge in demand for GPUs. Training LMs requires tens of thousands of GPUs and housing them in the same datacenter (DCs) is becoming challenging. We focus on training such models across multiple DCs connected via Wide-Area-Network (WAN). We build ATLAS that speeds up such training time using novel temporal bandwidth sharing and many other design choices. While ATLAS improves the training time, it does not eliminate the bubbles (idle GPU cycles). We built BUBBLETEA that runs prefill-as-a-service (part of LM inference) during the bubbles that improves the GPU utilization substantially without any impact of training. Together, ATLAS and BUBBLETEA improve training time by up to 17X and achieve GPU utilization of up to 94%.