Abstract:We present an application of autoregressive neural networks to Monte Carlo simulations of quantum spin chains using the correspondence with classical two-dimensional spin systems. We use a hierarchy of neural networks capable of estimating conditional probabilities of consecutive spins to evaluate elements of reduced density matrices directly. Using the Ising chain as an example, we calculate the continuum limit of the ground state's von Neumann and R\'enyi bipartite entanglement entropies of an interval built of up to 5 spins. We demonstrate that our architecture is able to estimate all the needed matrix elements with just a single training for a fixed time discretization and lattice volume. Our method can be applied to other types of spin chains, possibly with defects, as well as to estimating entanglement entropies of thermal states at non-zero temperature.
Abstract:We present the \texttt{NeuMC} software package, based on \pytorch, aimed at facilitating the research on neural samplers in lattice field theories. Neural samplers based on normalizing flows are becoming increasingly popular in the context of Monte-Carlo simulations as they can effectively approximate target probability distributions, possibly alleviating some shortcomings of the Markov chain Monte-Carlo methods. Our package provides tools to create such samplers for two-dimensional field theories.