Abstract:Recent advances in learned control, large-scale simulation, and generative models have accelerated progress toward general-purpose robotic controllers, yet the field still lacks platforms suitable for safe, expressive, long-term deployment in human environments. Most existing humanoids are either closed industrial systems or academic prototypes that are difficult to deploy and operate around people, limiting progress in robotics. We introduce Sprout, a developer platform designed to address these limitations through an emphasis on safety, expressivity, and developer accessibility. Sprout adopts a lightweight form factor with compliant control, limited joint torques, and soft exteriors to support safe operation in shared human spaces. The platform integrates whole-body control, manipulation with integrated grippers, and virtual-reality-based teleoperation within a unified hardware-software stack. An expressive head further enables social interaction -- a domain that remains underexplored on most utilitarian humanoids. By lowering physical and technical barriers to deployment, Sprout expands access to capable humanoid platforms and provides a practical basis for developing embodied intelligence in real human environments.
Abstract:SHallow REcurrent Decoders (SHRED) provide a deep learning strategy for modeling high-dimensional dynamical systems and/or spatiotemporal data from dynamical system snapshot observations. PySHRED is a Python package that implements SHRED and several of its major extensions, including for robust sensing, reduced order modeling and physics discovery. In this paper, we introduce the version 1.0 release of PySHRED, which includes data preprocessors and a number of cutting-edge SHRED methods specifically designed to handle real-world data that may be noisy, multi-scale, parameterized, prohibitively high-dimensional, and strongly nonlinear. The package is easy to install, thoroughly-documented, supplemented with extensive code examples, and modularly-structured to support future additions. The entire codebase is released under the MIT license and is available at https://github.com/pyshred-dev/pyshred.