University of Leeds, Leeds, UK
Abstract:Multimodal machine learning integrating histopathology and molecular data shows promise for cancer prognostication. We systematically reviewed studies combining whole slide images (WSIs) and high-throughput omics to predict overall survival. Searches of EMBASE, PubMed, and Cochrane CENTRAL (12/08/2024), plus citation screening, identified eligible studies. Data extraction used CHARMS; bias was assessed with PROBAST+AI; synthesis followed SWiM and PRISMA 2020. Protocol: PROSPERO (CRD42024594745). Forty-eight studies (all since 2017) across 19 cancer types met criteria; all used The Cancer Genome Atlas. Approaches included regularised Cox regression (n=4), classical ML (n=13), and deep learning (n=31). Reported c-indices ranged 0.550-0.857; multimodal models typically outperformed unimodal ones. However, all studies showed unclear/high bias, limited external validation, and little focus on clinical utility. Multimodal WSI-omics survival prediction is a fast-growing field with promising results but needs improved methodological rigor, broader datasets, and clinical evaluation. Funded by NPIC, Leeds Teaching Hospitals NHS Trust, UK (Project 104687), supported by UKRI Industrial Strategy Challenge Fund.
Abstract:The class of bigraphical lasso algorithms (and, more broadly, 'tensor'-graphical lasso algorithms) has been used to estimate dependency structures within matrix and tensor data. However, all current methods to do so take prohibitively long on modestly sized datasets. We present a novel tensor-graphical lasso algorithm that analytically estimates the dependency structure, unlike its iterative predecessors. This provides a speedup of multiple orders of magnitude, allowing this class of algorithms to be used on large, real-world datasets.