Abstract:Software obfuscation, particularly prevalent in JavaScript, hinders code comprehension and analysis, posing significant challenges to software testing, static analysis, and malware detection. This paper introduces CASCADE, a novel hybrid approach that integrates the advanced coding capabilities of Gemini with the deterministic transformation capabilities of a compiler Intermediate Representation (IR), specifically JavaScript IR (JSIR). By employing Gemini to identify critical prelude functions, the foundational components underlying the most prevalent obfuscation techniques, and leveraging JSIR for subsequent code transformations, CASCADE effectively recovers semantic elements like original strings and API names, and reveals original program behaviors. This method overcomes limitations of existing static and dynamic deobfuscation techniques, eliminating hundreds to thousands of hardcoded rules while achieving reliability and flexibility. CASCADE is already deployed in Google's production environment, demonstrating substantial improvements in JavaScript deobfuscation efficiency and reducing reverse engineering efforts.
Abstract:We introduce Imagen 3, a latent diffusion model that generates high quality images from text prompts. We describe our quality and responsibility evaluations. Imagen 3 is preferred over other state-of-the-art (SOTA) models at the time of evaluation. In addition, we discuss issues around safety and representation, as well as methods we used to minimize the potential harm of our models.