Abstract:We present VibrantSR (Vibrant Super-Resolution), a generative super-resolution framework for estimating 0.5 meter canopy height models (CHMs) from 10 meter Sentinel-2 imagery. Unlike approaches based on aerial imagery that are constrained by infrequent and irregular acquisition schedules, VibrantSR leverages globally available Sentinel-2 seasonal composites, enabling consistent monitoring at a seasonal-to-annual cadence. Evaluated across 22 EPA Level 3 eco-regions in the western United States using spatially disjoint validation splits, VibrantSR achieves a Mean Absolute Error of 4.39 meters for canopy heights >= 2 m, outperforming Meta (4.83 m), LANDFIRE (5.96 m), and ETH (7.05 m) satellite-based benchmarks. While aerial-based VibrantVS (2.71 m MAE) retains an accuracy advantage, VibrantSR enables operational forest monitoring and carbon accounting at continental scales without reliance on costly and temporally infrequent aerial acquisitions.




Abstract:This paper presents a comparative evaluation of methods for remote heart rate estimation using face videos, i.e., given a video sequence of the face as input, methods to process it to obtain a robust estimation of the subjects heart rate at each moment. Four alternatives from the literature are tested, three based in hand crafted approaches and one based on deep learning. The methods are compared using RGB videos from the COHFACE database. Experiments show that the learning-based method achieves much better accuracy than the hand crafted ones. The low error rate achieved by the learning based model makes possible its application in real scenarios, e.g. in medical or sports environments.