Abstract:Large language models (LLMs) are beginning to automate reward design for dexterous manipulation. However, no prior work has considered tactile sensing, which is known to be critical for human-like dexterity. We present Text2Touch, bringing LLM-crafted rewards to the challenging task of multi-axis in-hand object rotation with real-world vision based tactile sensing in palm-up and palm-down configurations. Our prompt engineering strategy scales to over 70 environment variables, and sim-to-real distillation enables successful policy transfer to a tactile-enabled fully actuated four-fingered dexterous robot hand. Text2Touch significantly outperforms a carefully tuned human-engineered baseline, demonstrating superior rotation speed and stability while relying on reward functions that are an order of magnitude shorter and simpler. These results illustrate how LLM-designed rewards can significantly reduce the time from concept to deployable dexterous tactile skills, supporting more rapid and scalable multimodal robot learning. Project website: https://hpfield.github.io/text2touch-website




Abstract:Surrogate modeling of non-linear oscillator networks remains challenging due to discrepancies between simplified analytical models and real-world complexity. To bridge this gap, we investigate hybrid reservoir computing, combining reservoir computing with "expert" analytical models. Simulating the absence of an exact model, we first test the surrogate models with parameter errors in their expert model. Second, we assess their performance when their expert model lacks key non-linear coupling terms present in an extended ground-truth model. We focus on short-term forecasting across diverse dynamical regimes, evaluating the use of these surrogates for control applications. We show that hybrid reservoir computers generally outperform standard reservoir computers and exhibit greater robustness to parameter tuning. Notably, unlike standard reservoir computers, the performance of the hybrid does not degrade when crossing an observed spectral radius threshold. Furthermore, there is good performance for dynamical regimes not accessible to the expert model, demonstrating the contribution of the reservoir.