Abstract:Recent advances in reinforcement learning (RL) have demonstrated impressive capabilities in complex decision-making tasks. This progress raises a natural question: how do these artificial systems compare to biological agents, which have been shaped by millions of years of evolution? To help answer this question, we undertake a comparative study of biological mice and RL agents in a predator-avoidance maze environment. Through this analysis, we identify a striking disparity: RL agents consistently demonstrate a lack of self-preservation instinct, readily risking ``death'' for marginal efficiency gains. These risk-taking strategies are in contrast to biological agents, which exhibit sophisticated risk-assessment and avoidance behaviors. Towards bridging this gap between the biological and artificial, we propose two novel mechanisms that encourage more naturalistic risk-avoidance behaviors in RL agents. Our approach leads to the emergence of naturalistic behaviors, including strategic environment assessment, cautious path planning, and predator avoidance patterns that closely mirror those observed in biological systems.
Abstract:Planning is an extraordinary ability in which the brain imagines and then enacts evaluated possible futures. Using traditional planning models, computer scientists have attempted to replicate this capacity with some level of success but ultimately face a reoccurring limitation: as the plan grows in steps, the number of different possible futures makes it intractable to determine the right sequence of actions to reach a goal state. Based on prior theoretical work on how the ecology of an animal governs the value of spatial planning, we developed a more efficient biologically-inspired planning algorithm, TLPPO. This algorithm allows us to achieve mouselevel predator evasion performance with orders of magnitude less computation than a widespread algorithm for planning in the situations of partial observability that typify predator-prey interactions. We compared the performance of a real-time agent using TLPPO against the performance of live mice, all tasked with evading a robot predator. We anticipate these results will be helpful to planning algorithm users and developers, as well as to areas of neuroscience where robot-animal interaction can provide a useful approach to studying the basis of complex behaviors.