Abstract:The increasing demand for spatial audio in applications such as virtual reality, immersive media, and spatial audio research necessitates robust solutions to generate binaural audio data sets for use in testing and validation. Binamix is an open-source Python library designed to facilitate programmatic binaural mixing using the extensive SADIE II Database, which provides Head Related Impulse Response (HRIR) and Binaural Room Impulse Response (BRIR) data for 20 subjects. The Binamix library provides a flexible and repeatable framework for creating large-scale spatial audio datasets, making it an invaluable resource for codec evaluation, audio quality metric development, and machine learning model training. A range of pre-built example scripts, utility functions, and visualization plots further streamline the process of custom pipeline creation. This paper presents an overview of the library's capabilities, including binaural rendering, impulse response interpolation, and multi-track mixing for various speaker layouts. The tools utilize a modified Delaunay triangulation technique to achieve accurate HRIR/BRIR interpolation where desired angles are not present in the data. By supporting a wide range of parameters such as azimuth, elevation, subject Impulse Responses (IRs), speaker layouts, mixing controls, and more, the library enables researchers to create large binaural datasets for any downstream purpose. Binamix empowers researchers and developers to advance spatial audio applications with reproducible methodologies by offering an open-source solution for binaural rendering and dataset generation. We release the library under the Apache 2.0 License at https://github.com/QxLabIreland/Binamix/
Abstract:In this paper, an algorithm designed to detect characteristic cough events in audio recordings is presented, significantly reducing the time required for manual counting. Using time-frequency representations and independent subspace analysis (ISA), sound events that exhibit characteristics of coughs are automatically detected, producing a summary of the events detected. Using a dataset created from publicly available audio recordings, this algorithm has been tested on a variety of synthesized audio scenarios representative of those likely to be encountered by subjects undergoing an ambulatory cough recording, achieving a true positive rate of 76% with an average of 2.85 false positives per minute.