Abstract:The rapid adoption of micromobility solutions, particularly two-wheeled vehicles like e-scooters and e-bikes, has created an urgent need for reliable autonomous riding (AR) technologies. While autonomous driving (AD) systems have matured significantly, AR presents unique challenges due to the inherent instability of two-wheeled platforms, limited size, limited power, and unpredictable environments, which pose very serious concerns about road users' safety. This review provides a comprehensive analysis of AR systems by systematically examining their core components, perception, planning, and control, through the lens of AD technologies. We identify critical gaps in current AR research, including a lack of comprehensive perception systems for various AR tasks, limited industry and government support for such developments, and insufficient attention from the research community. The review analyses the gaps of AR from the perspective of AD to highlight promising research directions, such as multimodal sensor techniques for lightweight platforms and edge deep learning architectures. By synthesising insights from AD research with the specific requirements of AR, this review aims to accelerate the development of safe, efficient, and scalable autonomous riding systems for future urban mobility.
Abstract:In this study, we present an innovative fusion of language models and query analysis techniques to unlock cognition in artificial intelligence. Our system seamlessly integrates a Chess engine with a language model, enabling it to predict moves and provide strategic explanations. Leveraging a vector database through retrievable answer generation, our OpenSI AI system elucidates its decision-making process, bridging the gap between raw computation and human-like understanding. Our choice of Chess as the demonstration environment underscores the versatility of our approach. Beyond Chess, our system holds promise for diverse applications, from medical diagnostics to financial forecasting.
Abstract:Secure robotics is a multi-disciplinary endeavour for improving the cybersecurity posture of robotic and embodied Artificial Intelligence systems. The article surveys emerging concepts and ideas encapsulating the notion of secure robotics and identifies five Secure Robotics Cybersecurity Control Implementation Layers as a crucial starting point for consideration by practitioners. It also recognises the need for further studies on the relationship between Human-robot trust and the implementation of established and novel cybersecurity controls.