Abstract:Falls have become more frequent in recent years, which has been harmful for senior citizens.Therefore detecting falls have become important and several data sets and machine learning model have been introduced related to fall detection. In this project report, a human fall detection method is proposed using a multi modality approach. We used the UP-FALL detection data set which is collected by dozens of volunteers using different sensors and two cameras. We use wrist sensor with acclerometer data keeping labels to binary classification, namely fall and no fall from the data set.We used fusion of camera and sensor data to increase performance. The experimental results shows that using only wrist data as compared to multi sensor for binary classification did not impact the model prediction performance for fall detection.
Abstract:For satellite images, the presence of clouds presents a problem as clouds obscure more than half to two-thirds of the ground information. This problem causes many issues for reliability in a noise-free environment to communicate data and other applications that need seamless monitoring. Removing the clouds from the images while keeping the background pixels intact can help address the mentioned issues. Recently, deep learning methods have become popular for researching cloud removal by demonstrating promising results, among which Generative Adversarial Networks (GAN) have shown considerably better performance. In this project, we aim to address cloud removal from satellite images using AttentionGAN and then compare our results by reproducing the results obtained using traditional GANs and auto-encoders. We use RICE dataset. The outcome of this project can be used to develop applications that require cloud-free satellite images. Moreover, our results could be helpful for making further research improvements.
Abstract:For humans, object detection, recognition, and tracking are innate. These provide the ability for human to perceive their environment and objects within their environment. This ability however doesn't translate well in computers. In Computer Vision and Multimedia, it is becoming increasingly more important to detect, recognize and track objects in images and/or videos. Many of these applications, such as facial recognition, surveillance, animation, are used for tracking features and/or people. However, these tasks prove challenging for computers to do effectively, as there is a significant amount of data to parse through. Therefore, many techniques and algorithms are needed and therefore researched to try to achieve human like perception. In this literature review, we focus on some novel techniques on object detection and recognition, and how to apply tracking algorithms to the detected features to track the objects' movements.