Abstract:Data-driven weather prediction models exhibit promising performance and advance continuously. In particular, diffusion models represent fine-scale details without spatial smoothing, which is crucial for mesoscale predictions, such as heavy rainfall forecasting. However, the applications of diffusion models to mesoscale prediction remain limited. To address this gap, this study proposes an architecture that combines a diffusion model with Swin-Unet as a deterministic model, achieving mesoscale predictions while maintaining flexibility. The proposed architecture trains the two models independently, allowing the diffusion model to remain unchanged when the deterministic model is updated. Comparisons using the Fractions Skill Score and power spectral analysis demonstrate that incorporating the diffusion model leads to improved accuracy compared to predictions without it. These findings underscore the potential of the proposed architecture to enhance mesoscale predictions, particularly for strong rainfall events, while maintaining flexibility.
Abstract:Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has made available the JAMSTEC Earth Deep-sea Image (J-EDI), a deep-sea video and image archive (https://www.godac.jamstec.go.jp/jedi/e/index.html). This archive serves as a valuable resource for researchers and scholars interested in deep-sea imagery. The dataset comprises images and videos of deep-sea phenomena, predominantly of marine organisms, but also of the seafloor and physical processes. In this study, we propose J-EDI QA, a benchmark for understanding images of deep-sea organisms using a multimodal large language model (LLM). The benchmark is comprised of 100 images, accompanied by questions and answers with four options by JAMSTEC researchers for each image. The QA pairs are provided in Japanese, and the benchmark assesses the ability to understand deep-sea species in Japanese. In the evaluation presented in this paper, OpenAI o1 achieved a 50% correct response rate. This result indicates that even with the capabilities of state-of-the-art models as of December 2024, deep-sea species comprehension is not yet at an expert level. Further advances in deep-sea species-specific LLMs are therefore required.