Abstract:We propose LingBench++, a linguistically-informed benchmark and reasoning framework designed to evaluate large language models (LLMs) on complex linguistic tasks inspired by the International Linguistics Olympiad (IOL). Unlike prior benchmarks that focus solely on final answer accuracy, LingBench++ provides structured reasoning traces, stepwise evaluation protocols, and rich typological metadata across over 90 low-resource and cross-cultural languages. We further develop a multi-agent architecture integrating grammatical knowledge retrieval, tool-augmented reasoning, and deliberate hypothesis testing. Through systematic comparisons of baseline and our proposed agentic models, we demonstrate that models equipped with external knowledge sources and iterative reasoning outperform single-pass approaches in both accuracy and interpretability. LingBench++ offers a comprehensive foundation for advancing linguistically grounded, culturally informed, and cognitively plausible reasoning in LLMs.
Abstract:The recent advances in Legal Large Language Models (LLMs) have transformed the landscape of legal research and practice by automating tasks, enhancing research precision, and supporting complex decision-making processes. However, effectively adapting LLMs to the legal domain remains challenging due to the complexity of legal reasoning, the need for precise interpretation of specialized language, and the potential for hallucinations. This paper examines the efficacy of Domain-Adaptive Continual Pre-Training (DACP) in improving the legal reasoning capabilities of LLMs. Through a series of experiments on legal reasoning tasks within the Taiwanese legal framework, we demonstrate that while DACP enhances domain-specific knowledge, it does not uniformly improve performance across all legal tasks. We discuss the trade-offs involved in DACP, particularly its impact on model generalization and performance in prompt-based tasks, and propose directions for future research to optimize domain adaptation strategies in legal AI.
Abstract:This study aims to fill the gap by constructing a topic-aware comparable corpus of Mainland Chinese Mandarin and Taiwanese Mandarin from the social media in Mainland China and Taiwan, respectively. Using Dcard for Taiwanese Mandarin and Sina Weibo for Mainland Chinese, we create a comparable corpus that updates regularly and reflects modern language use on social media.