Abstract:From characterizing the speed of a thermal system's response to computing natural modes of vibration, eigenvalue analysis is ubiquitous in engineering. In spite of this, eigenvalue problems have received relatively little treatment compared to standard forward and inverse problems in the physics-informed machine learning literature. In particular, neural network discretizations of solutions to eigenvalue problems have seen only a handful of studies. Owing to their nonlinearity, neural network discretizations prevent the conversion of the continuous eigenvalue differential equation into a standard discrete eigenvalue problem. In this setting, eigenvalue analysis requires more specialized techniques. Using a neural network discretization of the eigenfunction, we show that a variational form of the eigenvalue problem called the "Rayleigh quotient" in tandem with a Gram-Schmidt orthogonalization procedure is a particularly simple and robust approach to find the eigenvalues and their corresponding eigenfunctions. This method is shown to be useful for finding sets of harmonic functions on irregular domains, parametric and nonlinear eigenproblems, and high-dimensional eigenanalysis. We also discuss the utility of harmonic functions as a spectral basis for approximating solutions to partial differential equations. Through various examples from engineering mechanics, the combination of the Rayleigh quotient objective, Gram-Schmidt procedure, and the neural network discretization of the eigenfunction is shown to offer unique advantages for handling continuous eigenvalue problems.
Abstract:One use case of ``physics-informed neural networks'' (PINNs) is solution reconstruction, which aims to estimate the full-field state of a physical system from sparse measurements. Parameterized governing equations of the system are used in tandem with the measurements to regularize the regression problem. However, in real-world solution reconstruction problems, the parameterized governing equation may be inconsistent with the physical phenomena that give rise to the measurement data. We show that due to assuming consistency between the true and parameterized physics, PINNs-based approaches may fail to satisfy three basic criteria of interpretability, robustness, and data consistency. As we argue, these criteria ensure that (i) the quality of the reconstruction can be assessed, (ii) the reconstruction does not depend strongly on the choice of physics loss, and (iii) that in certain situations, the physics parameters can be uniquely recovered. In the context of elasticity and heat transfer, we demonstrate how standard formulations of the physics loss and techniques for constraining the solution to respect the measurement data lead to different ``constraint forces" -- which we define as additional source terms arising from the constraints -- and that these constraint forces can significantly influence the reconstructed solution. To avoid the potentially substantial influence of the choice of physics loss and method of constraint enforcement on the reconstructed solution, we propose the ``explicit constraint force method'' (ECFM) to gain control of the source term introduced by the constraint. We then show that by satisfying the criteria of interpretability, robustness, and data consistency, this approach leads to more predictable and customizable reconstructions from noisy measurement data, even when the parameterization of the missing physics is inconsistent with the measured system.