Abstract:Subgraph counting the task of determining the number of instances of a query pattern within a large graph lies at the heart of many critical applications, from analyzing financial networks and transportation systems to understanding biological interactions. Despite decades of work yielding efficient algorithmic (AL) solutions and, more recently, machine learning (ML) approaches, a clear comparative understanding is elusive. This gap stems from the absence of a unified evaluation framework, standardized datasets, and accessible ground truths, all of which hinder systematic analysis and fair benchmarking. To overcome these barriers, we introduce BEACON: a comprehensive benchmark designed to rigorously evaluate both AL and ML-based subgraph counting methods. BEACON provides a standardized dataset with verified ground truths, an integrated evaluation environment, and a public leaderboard, enabling reproducible and transparent comparisons across diverse approaches. Our extensive experiments reveal that while AL methods excel in efficiently counting subgraphs on very large graphs, they struggle with complex patterns (e.g., those exceeding six nodes). In contrast, ML methods are capable of handling larger patterns but demand massive graph data inputs and often yield suboptimal accuracy on small, dense graphs. These insights not only highlight the unique strengths and limitations of each approach but also pave the way for future advancements in subgraph counting techniques. Overall, BEACON represents a significant step towards unifying and accelerating research in subgraph counting, encouraging innovative solutions and fostering a deeper understanding of the trade-offs between algorithmic and machine learning paradigms.
Abstract:Hypothesis testing is a statistical method used to draw conclusions about populations from sample data, typically represented in tables. With the prevalence of graph representations in real-life applications, hypothesis testing in graphs is gaining importance. In this work, we formalize node, edge, and path hypotheses in attributed graphs. We develop a sampling-based hypothesis testing framework, which can accommodate existing hypothesis-agnostic graph sampling methods. To achieve accurate and efficient sampling, we then propose a Path-Hypothesis-Aware SamplEr, PHASE, an m- dimensional random walk that accounts for the paths specified in a hypothesis. We further optimize its time efficiency and propose PHASEopt. Experiments on real datasets demonstrate the ability of our framework to leverage common graph sampling methods for hypothesis testing, and the superiority of hypothesis-aware sampling in terms of accuracy and time efficiency.