Abstract:The global agricultural sector is undergoing a transformative shift, driven by increasing food demands, climate variability and the need for sustainable practices. SUSTAINABLE is a smart farming platform designed to integrate IoT, AI, satellite imaging, and role-based task orchestration to enable efficient, traceable, and sustainable agriculture with a pilot usecase in viticulture. This paper explores current smart agriculture solutions, presents a comparative evaluation, and introduces SUSTAINABLE's key features, including satellite index integration, real-time environmental data, and role-aware task management tailored to Mediterranean vineyards.




Abstract:We propose a novel point cloud U-Net diffusion architecture for 3D generative modeling capable of generating high-quality and diverse 3D shapes while maintaining fast generation times. Our network employs a dual-branch architecture, combining the high-resolution representations of points with the computational efficiency of sparse voxels. Our fastest variant outperforms all non-diffusion generative approaches on unconditional shape generation, the most popular benchmark for evaluating point cloud generative models, while our largest model achieves state-of-the-art results among diffusion methods, with a runtime approximately 70% of the previously state-of-the-art PVD. Beyond unconditional generation, we perform extensive evaluations, including conditional generation on all categories of ShapeNet, demonstrating the scalability of our model to larger datasets, and implicit generation which allows our network to produce high quality point clouds on fewer timesteps, further decreasing the generation time. Finally, we evaluate the architecture's performance in point cloud completion and super-resolution. Our model excels in all tasks, establishing it as a state-of-the-art diffusion U-Net for point cloud generative modeling. The code is publicly available at https://github.com/JohnRomanelis/SPVD.git.