Abstract:Multistatic integrated sensing and communications (ISAC) systems, which use distributed transmitters and receivers, offer enhanced spatial coverage and sensing accuracy compared to stand-alone ISAC configurations. However, these systems face challenges due to interference between co-existing ISAC nodes, especially during simultaneous operation. In this paper, we analyze the impact of this mutual interference arising from the co-existence in a multistatic ISAC scenario, where a mono- and a bistatic ISAC system share the same spectral resources. We first classify differenct types of interference in the power domain. Then, we discuss how the interference can affect both sensing and communications in terms of bit error rate (BER), error vector magnitude (EVM), and radar image under varied transmit power and RCS configurations through simulations. Along with interfernce analysis, we propose a low-complexity successive interference cancellation method that adaptively cancels either the monostatic reflection or the bistatic line-of-sight signal based on a monostatic radar image signal-to-interference-plus-noise ratio (SINR). The proposed framework is evaluated with both simulations and proof-of-concept measurements using an ISAC testbed with a radar echo generator for object emulation. The results have shown that the proposed method reduces BER and improves EVM as well as radar image SINR across a wide range of SINR conditions. These results demonstrate that accurate component-wise cancellation can be achieved with low computational overhead, making the method suitable for practical applications.
Abstract:In future sixth-generation (6G) mobile networks, radar sensing is expected to be offered as an additional service to its original purpose of communication. Merging these two functions results in integrated sensing and communication (ISAC) systems. In this context, bistatic ISAC appears as a possibility to exploit the distributed nature of cellular networks while avoiding highly demanding hardware requirements such as full-duplex operation. Recent studies have introduced strategies to perform required synchronization and data exchange between nodes for bistatic ISAC operation, based on orthogonal frequency-division multiplexing (OFDM), however, only for single-input single-output architectures. In this article, a system concept for a bistatic multiple-input multiple-output (MIMO)-OFDM-based ISAC system with beamforming at both transmitter and receiver is proposed, and a distribution synchronization concept to ensure coherence among the different receive channels for direction-of-arrival estimation is presented. After a discussion on the ISAC processing chain, including relevant aspects for practical deployments such as transmitter digital pre-distortion and receiver calibration, a 4x8 MIMO measurement setup at 27.5 GHz and results are presented to validate the proposed system and distribution synchronization concepts.