Abstract:Existing saliency-guided training approaches improve model generalization by incorporating a loss term that compares the model's class activation map (CAM) for a sample's true-class ({\it i.e.}, correct-label class) against a human reference saliency map. However, prior work has ignored the false-class CAM(s), that is the model's saliency obtained for incorrect-label class. We hypothesize that in binary tasks the true and false CAMs should diverge on the important classification features identified by humans (and reflected in human saliency maps). We use this hypothesis to motivate three new saliency-guided training methods incorporating both true- and false-class model's CAM into the training strategy and a novel post-hoc tool for identifying important features. We evaluate all introduced methods on several diverse binary close-set and open-set classification tasks, including synthetic face detection, biometric presentation attack detection, and classification of anomalies in chest X-ray scans, and find that the proposed methods improve generalization capabilities of deep learning models over traditional (true-class CAM only) saliency-guided training approaches. We offer source codes and model weights\footnote{GitHub repository link removed to preserve anonymity} to support reproducible research.
Abstract:Class Activation Mapping (CAM) and its gradient-based variants (e.g., GradCAM) have become standard tools for explaining Convolutional Neural Network (CNN) predictions. However, these approaches typically focus on individual logits, while for neural networks using softmax, the class membership probability estimates depend \textit{only} on the \textit{differences} between logits, not on their absolute values. This disconnect leaves standard CAMs vulnerable to adversarial manipulation, such as passive fooling, where a model is trained to produce misleading CAMs without affecting decision performance. We introduce \textbf{Salience-Hoax Activation Maps (SHAMs)}, an \emph{entropy-aware form of passive fooling} that serves as a benchmark for CAM robustness under adversarial conditions. To address the passive fooling vulnerability, we then propose \textbf{DiffGradCAM}, a novel, lightweight, and contrastive approach to class activation mapping that is both non-suceptible to passive fooling, but also matches the output of standard CAM methods such as GradCAM in the non-adversarial case. Together, SHAM and DiffGradCAM establish a new framework for probing and improving the robustness of saliency-based explanations. We validate both contributions across multi-class tasks with few and many classes.