Abstract:This paper aims at providing an effective multi-modal images invariant feature extraction and matching algorithm for the application of multi-source data analysis. Focusing on the differences and correlation of multi-modal images, a feature-based matching algorithm is implemented. The key technologies include phase congruency (PC) and Shi-Tomasi feature point for keypoints detection, LogGabor filter and a weighted partial main orientation map (WPMOM) for feature extraction, and a multi-scale process to deal with scale differences and optimize matching results. The experimental results on practical data from multiple sources prove that the algorithm has effective performances on multi-modal images, which achieves accurate spatial alignment, showing practical application value and good generalization.
Abstract:Multi-source image registration is challenging due to intensity, rotation, and scale differences among the images. Considering the characteristics and differences of multi-source remote sensing images, a feature-based registration algorithm named Multi-scale Histogram of Local Main Orientation (MS-HLMO) is proposed. Harris corner detection is first adopted to generate feature points. The HLMO feature of each Harris feature point is extracted on a Partial Main Orientation Map (PMOM) with a Generalized Gradient Location and Orientation Histogram-like (GGLOH) feature descriptor, which provides high intensity, rotation, and scale invariance. The feature points are matched through a multi-scale matching strategy. Comprehensive experiments on 17 multi-source remote sensing scenes demonstrate that the proposed MS-HLMO and its simplified version MS-HLMO$^+$ outperform other competitive registration algorithms in terms of effectiveness and generalization.
Abstract:This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion. Focusing on the characteristics and differences of multi-source remote sensing images, a feature-based registration algorithm is implemented. The key technologies include image scale-space for implementing multi-scale properties, Harris corner detection for keypoints extraction, and partial intensity invariant feature descriptor (PIIFD) for keypoints description. Eventually, a multi-scale Harris-PIIFD image registration algorithm framework is proposed. The experimental results of four sets of representative real data show that the algorithm has excellent, stable performance in multi-source remote sensing image registration, and can achieve accurate spatial alignment, which has strong practical application value and certain generalization ability.